-
SICK編碼器的分辨率,倍頻與細分
發(fā)布時間: 2019-11-19 點擊次數(shù): 1438次SICK編碼器的分辨率,倍頻與細分
SICK編碼器是一種通過光電轉換將輸出軸上的機械幾何位移量轉換成脈沖或數(shù)字量的傳感器。這是目前應用多的傳感器,光電編碼器是由光柵盤和光電檢測裝置組成。光柵盤是在一定直徑的圓板上等分地開通若干個長方形孔。由于光電碼盤與電動機同軸,電動機旋轉時,光柵盤與電動機同速旋轉,經(jīng)發(fā)光二極管等電子元件組成的檢測裝置檢測輸出若干脈沖信號,其原理示意圖如圖1所示;通過計算每秒光電編碼器輸出脈沖的個數(shù)就能反映當前電動機的轉速。此外,為判斷旋轉方向,碼盤還可提供相位相差90旱牧鉸仿齔逍藕擰
根據(jù)檢測原理,編碼器可分為光學式、磁式、感應式和電容式。根據(jù)其刻度方法及信號輸出形式,可分為增量式、式以及混合式三種。
1.1 SICK編碼器是直接利用光電轉換原理輸出三組方波脈沖A、B和Z相;A、B兩組脈沖相位差90海傭煞獎愕嘏卸銑魴較潁鳽相為每轉一個脈沖,用于基準點定位。它的優(yōu)點是原理構造簡單,機械平均壽命可在幾萬小時以上,抗干擾能力強,可靠性高,適合于長距離傳輸。其缺點是無法輸出軸轉動的位置信息。
SICK編碼器是直接輸出數(shù)字量的傳感器,在它的圓形碼盤上沿徑向有若干同心碼道,每條道上由透光和不透光的扇形區(qū)相間組成,相鄰碼道的扇區(qū)數(shù)目是雙倍關系,碼盤上的碼道數(shù)就是它的二進制數(shù)碼的位數(shù),在碼盤的一側是光源,另一側對應每一碼道有一光敏元件;當碼盤處于不同位置時,各光敏元件根據(jù)受光照與否轉換出相應的電平信號,形成二進制數(shù)。這種編碼器的特點是不要計數(shù)器,在轉軸的任意位置都可讀出一個固定的與位置相對應的數(shù)字碼。顯然,碼道越多,分辨率就越高,對于一個具有 N位二進制分辨率的編碼器,其碼盤必須有N條碼道。目前國內(nèi)已有16位的編碼器產(chǎn)品。
式編碼器是利用自然二進制或循環(huán)二進制(葛萊碼)方式進行光電轉換的。式編碼器與增量式編碼器不同之處在于圓盤上透光、不透光的線條圖形,編碼器可有若干編碼,根據(jù)讀出碼盤上的編碼,檢測位置。編碼的設計可采用二進制碼、循環(huán)碼、二進制補碼等。它的特點是:
1.2.1可以直接讀出角度坐標的值;
1.2.2沒有累積誤差;
1.2.3電源切除后位置信息不會丟失。但是分辨率是由二進制的位數(shù)來決定的,也就是說精度取決于位數(shù),目前有10位、14位等多種。
1.3混合式值編碼器
混合式值編碼器,它輸出兩組信息:一組信息用于檢測磁極位置,帶有信息功能;另一組則*同增量式編碼器的輸出信息。
光電編碼器是一種角度(角速度)檢測裝置,它將輸入給軸的角度量,利用光電轉換原理轉換成相應的電脈沖或數(shù)字量,具有體積小,精度高,工作可靠,接口數(shù)字化等優(yōu)點。它廣泛應用于數(shù)控機床、回轉臺、伺服傳動、機器人、雷達、軍事目標測定等需要檢測角度的裝置和設備中。
SICK編碼器具備良好的使用,在角度測量、位移測量時抗干擾能力很強,并具有穩(wěn)定可靠的輸出脈沖信號,且該脈沖信號經(jīng)計數(shù)后可得到被測量的數(shù)字信號。因此,我們在研制汽車駕駛模擬器時,對方向盤旋轉角度的測量選用EPC-75光電編碼器作為傳感器,其輸出電路選用集電極開路型,輸出分辨率選用360個脈沖/圈,考慮到汽車方向盤轉動是雙向的,既可順時針旋轉,也可逆時針旋轉,需要對編碼器的輸出信號鑒相后才能計數(shù)。圖2給出了光電編碼器實際使用的鑒相與雙向計數(shù)電路,鑒相電路用1個D觸發(fā)器和2個與非門組成,計數(shù)電路用3片74LS193組成。
SICK編碼器具碼盤要簡單得多且分辨率更高。一般只需要三條碼道,這里的碼道實際上已不具有編碼器碼道的意義,而是產(chǎn)生計數(shù)脈沖。它的碼盤的外道和中間道有數(shù)目相同均勻分布的透光和不透光的扇形區(qū)(光柵),但是兩道扇區(qū)相互錯開半個區(qū)。當碼盤轉動時,它的輸出信號是相位差為90°的A相和B相脈沖信號以及只有一條透光狹縫的三碼道所產(chǎn)生的脈沖信號(它作為碼盤的基準位置,給計數(shù)系統(tǒng)提供一個初始的零位信號)。從A,B兩個輸出信號的相位關系(前或滯后)可判斷旋轉的方向。由圖3(a)可見,當碼盤正轉時,A道脈沖波形比B道前π/2,而反轉時,A道脈沖比B道滯后π/2。
SICK編碼器具是一實際電路,用A道整形波的下沿觸發(fā)單穩(wěn)態(tài)產(chǎn)生的正脈沖與B道整形波相‘與’,當碼盤正轉時只有正向口脈沖輸出,反之,只有逆向口脈沖輸出。因此,增量編碼器是根據(jù)輸出脈沖源和脈沖計數(shù)來確定碼盤的轉動方向和相對角位移量。通常,若編碼器有N個(碼道)輸出信號,其相位差為π/ N,可計數(shù)脈沖為2N倍光柵數(shù),現(xiàn)在N=2。圖3電路的缺點是有時會產(chǎn)生誤記脈沖造成誤差,這種情況出現(xiàn)在當某一道信號處于‘高’或‘低’電平狀態(tài),而另一道信號正處于‘高’和 ‘低’之間的往返變化狀態(tài),此時碼盤雖然未產(chǎn)生位移,但是會產(chǎn)生單方向的輸出脈沖。例如,碼盤發(fā)生抖動或手動對準位置時(下面可以看到,在重力儀測量時就會有這種情況)。
SICK編碼器具是一個既能防止誤脈沖又能提高分辨率的四倍頻細分電路。在這里,采用了有記憶功能的D型觸發(fā)器和時鐘發(fā)生電路。由圖4可見,每一道有兩個D觸發(fā)器串接,這樣,在時鐘脈沖的間隔中,兩個Q端(如對應B道的74LS175的2、7引腳)保持前兩個時鐘期的輸入狀態(tài),若兩者相同,則表示時鐘間隔中無變化;否則,可以根據(jù)兩者關系判斷出它的變化方向,從而產(chǎn)生‘正向’或‘反向’輸出脈沖。當某道由于振動在‘高’、‘低’間往復變化時,將交替產(chǎn)生‘正向’和‘反向’脈沖,這在對兩個計數(shù)器取代數(shù)和時就可消除它們的影響(下面儀器的讀數(shù)也將涉及這點)。
-
霍尼韋爾Honeywell
-
日本TOYOOKI豐興
-
Phoenix菲尼克斯
-
SMC/日本SMC
-
施克|SICK傳感器
-
FESTO|費斯托電磁閥
-
BURKERT|寶德電磁閥
-
CKD(喜開理)電磁閥
-
NORGREN/諾冠電磁閥
-
美國MAC|MAC電磁閥
-
美國ASCO|世格電磁閥
-
PILZ|皮爾茲繼電器
-
Herion|海隆液壓電磁閥
-
德國BUSCHJOST
-
韓國YPC|YPC電磁閥
-
YUKEN(油研)電磁閥
-
PEPPERL+FUCHS-倍加福
-
日本SUNX|Panasonic
-
TURCK|TURCK傳感器
-
Schneider施耐德
-
NUMATICS|紐曼蒂克電磁閥
-
丹麥丹佛斯/DANFOSS
-
OMRON-歐姆龍傳感器
-
意大利CAMOZZI康茂盛
-
瑞士CONTRINEX
-
德國E+H
-
日本小金井-KOGANEI氣缸
-
日本DAIKIN大金
-
AIRTAC
-
CAMOZZI/康茂盛
-
德國Bar
-
KURODA黑田精工
-
日本TAIYO/太陽鐵工
-
德國HAWE|哈威電磁閥
-
意大利ATOS/阿托斯
-
意大利UNIVER
-
日本NACHI|不二越電磁閥
-
Hengstler(亨士樂)
-
德國IFM易福門
-
德國GEMU蓋米
-
德國HYDAC|HYDAC傳感器
-
美國SOR|SOR壓力開關
-
德國BALLUFF|巴魯夫傳感器
-
德國REXROTH|力士樂電磁閥
-
美國parker|PARKER柱塞泵
-
美國VICKERS
-
德國AVENTICS安沃馳
-
德國LEUZE勞易測
-
美國邦納BANNER
-
百弗BIFOLD